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S2 Chaos onset in inhibitory rate models with twice
differentiable transfer functions

Numerical simulations indicate that for all the transfer functions considered
in this paper the bifurcation from fixed point to chaos is supercritical. When
Jo — JF, 09 and 040 = O pmar as well as oy, converge to o.. The first and
second order derivatives of V' (o;00) with respect to o must therefore be
equal to zero at o.. Thus o, J. and the value of at the bifurcation, ., are
determined by:
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Iy — % = Jc/ g (e + +/0cz) Dz (3)

To study the critical behavior at chaos onset we expand the DMFT
equations in § = J — J. < 1. Defining:

po= et ps+0(8%) (4)
o0 = et o )5+ 0(6?) (5)
0o = 0o+ 05+ 0(6?) (6)

and assuming g(x) continuously differentiable to the second order, we ex-
pand V(o) around o:

V(o) =V(ox) + %V”(O’oo)(O' — 000)* + éV’”(O’OO)(U — o)’ 4. (7)

where we used V'(0s) = 0. Since V" (0,) =0, V"(0x) and V"' (0 ) can be
written: V" (0x) = —Vad + O(6?) and V" (04,) = V3 + O(5) where Vo and



V3 do not depend on 4. Since g — 0o is O(d) we define

a0 — 0

Os 5 (8)

Thus: ) )
V(o) - Viow) = (—2v2cff + 6%053) 5 (9)

Using V(00) = V(0a) and defining 7 £ 7 - V/§ /7gyn, Eqs. (33,9) imply:
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Integration of this equation with the constraint that the derivative

dog
e =0 (10)
7=0
yields:
N2
os(T) = 3‘/‘? [cosh ( ‘2/27>} (11)

In particular, at chaos onset the amplitude of the fluctuations in the net
synaptic inputs vanishes linearly with 6 whereas the correlation time of
these fluctuations diverges as 1/+/9.
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Finally, the coefficients V5 and V3 as well as pu(Y), oy’ and o5’ are ob-
tained using Eq. (7) combined with V(0p) = V(0 ). Hence:
1
V' (000) + 3V" (00 (04" = oll)d = 0(3)

A tedious but straightforward calculation shows that the coefficients p(!,

T
O'(()l) and o) are given by <u(1),aél),0£)> = —J%Wfl-(l, e, Io/2)" where
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and
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One then gets:
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Vo =Je ( N Q +2pu" Ryg + (2%0 o ) (Q+ R13)> + 7. (12)

Vs = J.2Q (13)
Example: Sigmoid transfer function

For g(z) £ ¢(z) = 3 [1 + erf <%>} and G(z) = ®(z) £ % [1 + erf <%>} +
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, 1, 0o and o satisfy:
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where T'(h, a) = “7= e 7—d.
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At chaos onset, 0y, 0o — 0. and:

! (;2 . 1) — 12 (6(he)) — 2T (he, ) (a7
L ‘;j:ac ombhe(14a.?) (18)
Io— jf{ — T ¢ (he) (19)

where he = pe/v/1+ 0. and a. = 1/y/1 + 20,.

The bifurcation diagram in Fig. 4 in the main text was obtained by
numerically solving Eqs. (14)-(16) and Eqgs. (17)-(19) for Iy = 1. The per-
turbative expansion of these equations in the limit Jy — J ~ 4.995 yields
Egs. (4) with:
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In particular, o9 — 000 = (0(()1) - Jg))é + O(6?) is an excellent match with
the numerical solution of Eqs. (14)-(16) (see main text, Fig. 4A inset).
The values of V5 and V3 are:
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from which one obtains the PAC of the net synaptic inputs, o(7), in the
vicinity of chaos onset, using Eqs. (8,11).

Figure S2 depicts the convergence of the function (V (o) — V(04))/6% to
its asymptotic form in the limit § — 0.
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Figure S2: The potential function in inhibitory rate models with
g(x) = ¢(x). The potential was obtained for different values of 6 = Jy—J,. >
0 (Jo = 4.995) by solving the self-consistentg DMFT equations (Ip = 1). The
figure shows the convergence of the potential to its asymptotic form, Eq. (9),
when 6 — 0.



